If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying [(7t * 7t) + -2t + 6] + [(-3t * -3t) + t + 4] = 0 Reorder the terms for easier multiplication: [(7 * 7t * t) + -2t + 6] + [(-3t * -3t) + t + 4] = 0 Multiply 7 * 7 [(49t * t) + -2t + 6] + [(-3t * -3t) + t + 4] = 0 Multiply t * t [(49t2) + -2t + 6] + [(-3t * -3t) + t + 4] = 0 Reorder the terms: [6 + -2t + (49t2)] + [(-3t * -3t) + t + 4] = 0 Remove brackets around [6 + -2t + (49t2)] 6 + -2t + (49t2) + [(-3t * -3t) + t + 4] = 0 Reorder the terms for easier multiplication: 6 + -2t + (49t2) + [(-3 * -3t * t) + t + 4] = 0 Multiply -3 * -3 6 + -2t + (49t2) + [(9t * t) + t + 4] = 0 Multiply t * t 6 + -2t + (49t2) + [(9t2) + t + 4] = 0 Reorder the terms: 6 + -2t + (49t2) + [4 + t + (9t2)] = 0 Remove brackets around [4 + t + (9t2)] 6 + -2t + (49t2) + 4 + t + (9t2) = 0 Reorder the terms: 6 + 4 + -2t + t + (49t2) + (9t2) = 0 Combine like terms: 6 + 4 = 10 10 + -2t + t + (49t2) + (9t2) = 0 Combine like terms: -2t + t = -1t 10 + -1t + (49t2) + (9t2) = 0 Combine like terms: (49t2) + (9t2) = 58t2 10 + -1t + 58t2 = 0 Solving 10 + -1t + 58t2 = 0 Solving for variable 't'. Begin completing the square. Divide all terms by 58 the coefficient of the squared term: Divide each side by '58'. 0.1724137931 + -0.01724137931t + t2 = 0 Move the constant term to the right: Add '-0.1724137931' to each side of the equation. 0.1724137931 + -0.01724137931t + -0.1724137931 + t2 = 0 + -0.1724137931 Reorder the terms: 0.1724137931 + -0.1724137931 + -0.01724137931t + t2 = 0 + -0.1724137931 Combine like terms: 0.1724137931 + -0.1724137931 = 0.0000000000 0.0000000000 + -0.01724137931t + t2 = 0 + -0.1724137931 -0.01724137931t + t2 = 0 + -0.1724137931 Combine like terms: 0 + -0.1724137931 = -0.1724137931 -0.01724137931t + t2 = -0.1724137931 The t term is -0.01724137931t. Take half its coefficient (-0.008620689655). Square it (0.00007431629013) and add it to both sides. Add '0.00007431629013' to each side of the equation. -0.01724137931t + 0.00007431629013 + t2 = -0.1724137931 + 0.00007431629013 Reorder the terms: 0.00007431629013 + -0.01724137931t + t2 = -0.1724137931 + 0.00007431629013 Combine like terms: -0.1724137931 + 0.00007431629013 = -0.17233947680987 0.00007431629013 + -0.01724137931t + t2 = -0.17233947680987 Factor a perfect square on the left side: (t + -0.008620689655)(t + -0.008620689655) = -0.17233947680987 Can't calculate square root of the right side. The solution to this equation could not be determined.
| 3(f-5)=-21 | | (-y+5.3)=(7.2y-9) | | 69x-40+7=-5 | | 7log[2](x)=49 | | 10(s-9)=-126 | | 3x^3+22x^2+5x-20=0 | | 22-x^2=4 | | 7log[2]=49 | | .25(4x-5)=1.5x-.1(5x+3) | | K-9=79 | | 4n(n)-1=0 | | 77x^2-38x-24= | | 19+8s=91 | | 5(2+y)-y=10+4(-1+1) | | 3c^2-c-10=0 | | 20b^2-112b-48= | | X^2+8z-48=0 | | -5-x-2+7x=3x-4+8 | | 6x+-9=7+-2x | | -5.3y=(7.2y-9) | | 10s-99=901 | | 3x^4+36x^3+105x^2= | | 7(3s+1)=112 | | 35x^2-2x-1= | | -3m+5+6m=1+5m+3 | | 7(2l+9)=105 | | 6m+11=52 | | (9x-8)(2x-9)=0 | | V^2-16v+21= | | 3u-38=5(u-4) | | 10x-18=2x+2 | | 3q-4=8 |